Current research projects /Completed research projects /

Targeting the cancer stem cells in glioblastoma

Project details

Dr Claudia Barros
Plymouth University
Research area
Brain tumours
Funding type
Project grant
Awarded in
September 2017


Glioblastoma is the most common primary malignant brain tumour in adults. Its impact is devastating - there is no cure and most patients die within a year of diagnosis.

Dr Barros is studying the cancer stem cells within glioblastoma. These are thought to drive tumour recurrence after treatment, and may hold the key to the development of new and more effective treatments.

Following rigorous assessment as part of our competitive project grant round, this project was selected for funding because the members of our Scientific Advisory Panel felt that it would make an important contribution to knowledge in an important area, with high unmet need. Based on excellent preliminary data, the Panel agreed that the work was compelling and likely to succeed.

About glioblastoma

Around 2,500 people are diagnosed with glioblastoma every year in the UK.

The prognosis is bleak for those affected. Glioblastoma is a grade 4 tumour, meaning that it grows and spreads quickly. It is difficult to remove surgically because it infiltrates the brain, with finger-like tentacles that often wrap around vital brain structures.

Following surgery to remove the bulk of the tumour, radiation and chemotherapy are used in an effort to slow the growth of remaining tumour. But glioblastomas are aggressive tumours and often appear resistant to treatment or quickly recur.

Only 20 per cent of glioblastoma patients survive more than one year from diagnosis, and only three per cent survive more than three years. New treatments are desperately needed.

Read more: Brain tumours

Targeting brain cancer stem cells in glioblastoma

Cancer stem cells are a group of cells within a tumour that are particularly resistant to therapy. Even if most other tumour cells are eradicated, the cancer stem cells can remain and cause the tumour to re-grow.

Understanding the properties of these cancer stem cells – and finding a way to destroy them – could therefore hold the key to the more effective treatment of tumours. Yet, despite ongoing research efforts from teams around the world, knowledge in this area remains very limited.

Working in collaboration with colleagues from Derriford Hospital in Plymouth and the Medical Research Council Centre for Regenerative Medicine in Edinburgh, Dr Barros is deciphering the mechanisms responsible for the formation and development of cancer stem cells in glioblastoma.

The project builds on previous work in which the team used a sophisticated system to model human glioblastoma cancer stem cell and tumour development using the fruit fly Drosophila.

This model enables them to visualise the cancer stem cells at the time they originate inside the intact brain and identify early cellular and molecular changes. They have been able to identify molecules that are differently expressed in the cancer stem cells and normal brain cells.

More than 70 per cent of the molecules identified in this preliminary work have matching molecules in humans. The team will now explore the properties of these molecules in glioblastoma stem cells from human patients, evaluating properties such as cell proliferation, cell death and ability to (re)form cell masses.


Dr Barros is using a highly original approach to address important questions concerning how malignant brain tumours form and why they frequently recur after treatment. The limited knowledge in this area has so far hampered the development of effective targeted therapies.

The new factors and mechanisms that Dr Barros hopes to reveal have the potential to become new targets for the treatment of these deadly brain tumours, offering hope to those affected by this devastating brain tumour in the future.

Glioblastoma is a fatal cancer, and therefore basic research helping to understand the underlying mechanisms is highly appreciated and is indeed crucial for further therapy development. The proposed work is therefore highly important and original.

- External reviewer.

Related projects

Brain tumours are one of our current research priorities, reflecting the large unmet need in this area. Our aim is to fund research to advance understanding of the causes and underlying mechanisms of brain tumours, and help us to diagnose and treat them more effectively.

Other research projects currently funded under this theme:

Related projects

Find out about our other research in this area: